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Stress Transformations 
Other documents on this website address coordinate stresses, i.e., stress components 
along the coordinate axes. Equations for equilibrium, material law, and kinematic 
compatibility are established for coordinate stresses and strains. However, it is useful to 
transform the stresses, and sometimes the strains, into other coordinate system. This 
means that we seek stresses on planes that are not aligned with the coordinate axes. One 
useful outcome is the determination of “principal stresses” as explained later. 

2D Transformations 
Consider the plane stress state, in which only σxx, σyy, and σxy=σyx≡τxy act. Suppose that 
these coordinate stresses are known. The objective in this section is to determine the 
stress state in rotated configurations, e.g., to determine the principal stresses. Let θ denote 
the angle (positive counter-clockwise) between the original coordinate system and the 
rotated one. The rotated plane is shown in Figure 1, where the stresses on that plane are 
called σ and τ. 

 
Figure 1: Stresses on an inclined plane. 

By noting that cos(θ)=ly/l and sin(θ)=lx/l,  equilibrium in the direction of σ yields 

 σ = σ xx ⋅ cos
2 (θ) +σ yy ⋅ sin

2 (θ) + 2 ⋅τ xy ⋅ cos(θ) ⋅ sin(θ)  (1) 

The trigonometric identities cos2(θ)=(1+cos(2θ))/2, sin2(θ)=(1+sin(2θ))/2, and 
sin(2θ)=2sin(θ)cos(θ) lead to the modified expression 
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 σ =
σ xx +σ yy

2
+
σ xx − σ yy

2
⋅ cos(2θ) + τ xy ⋅ sin(2θ)  (2) 

Similarly, equilibrium in the direction of τ yields: 

 τ =
σ xx − σ yy

2
⋅ sin(2θ) − τ xy ⋅ cos(2θ)  (3) 

Eqs. (2) and (3) establish the basis for transformation (rotation) of stresses in two-
dimensional stress states. Extreme values of σ and τ and the corresponding angle θ are 
determined by setting the derivative of Eqs. (2) and (3) with respect to θ equal to zero. 
However, the graphical approach known as Mohr’s circle is an appealing alternative to 
analytical derivations. 

Mohr’s Circle 
Eqs. (2) and (3) represent a circle in the σ−τ plane. To derive the expression for the 
circle, move the first term in the right-hand side of Eq. (2) to the left-hand side. Then 
square Eqs. (2) and (3) and add them. Upon using the trigonometric identity 
sin2(θ)+cos2(θ)=1 and cancelling terms, one obtains 

 σ −
σ xx +σ yy

2
⎛
⎝⎜

⎞
⎠⎟

2

+ τ 2 =
σ xx − σ yy

2
⎛
⎝⎜

⎞
⎠⎟

2

+ τ xy
2  (4) 

This equation forms a circle in the σ−τ plane, shifted along the σ-axis, as shown in 
Figure 2. All points on Mohr’s circle represents stress states at planes of different angle θ. 
In fact, drawing the circle immediately reveals the maximum and minimum axial stresses 
at the locations with zero shear stress. Conversely, it is observed in Figure 2 that the 
stress states with maximum shear stress are usually not associated with zero axial 
stresses.  

Although there are several methods for working with Mohr’s circle, two questions appear 
prominently in its practical use: What is the orientation, θ, of the plane for any of the 
stress states on the circle? What is the direction of the shear stress at any point on the 
circle? These questions are answered by the following procedure: 

1. Draw Mohr’s circle with the radius and centre-shift as shown in Figure 2. 
2. On the circle, identify the location of the stress state (σxx, τxy) that acts on the 

right-hand side of the particle, i.e., on the plane that has the x-axis as the surface 
normal. This point is called the “origin of planes.” By definition, this stress state 
is associated with θ=0. Be careful with the sign of the shear stress; clockwise 
shear stress is positive, which contradicts the positive direction of the coordinate 
stress on this surface. 

3. Draw a horizontal line from the origin of planes. The point where the line 
intersects with the circle is called the “pole point.” When σxx=σyy the origin of 
planes coincides with the pole point.  

4. Draw a straight line from the pole point to any point of Mohr’s circle and study 
that stress state: 
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a. The abscissa axis provides the axial stress (tension is positive).  
b. The ordinate axis provides the shear stress (clockwise is positive).  
c. The angle between the horizontal axis and that straight line equals θ (see 

the identification of θ in Figure 2).  

 
Figure 2: Mohr’s circle. 

Notice in particular that the stress state (σyy, τxy) is confirmed by drawing a vertical line 
from the pole point. This is the stress state that acts on the plane that has the y-axis as the 
surface normal. By definition, this stress state is associated with θ=90o but on the circle it 
will always be 180o away from the origin of planes. Also, notice that the direction of the 
principal axes are identified by drawing a straight line from the pole point to the locations 
on the circle with zero shear stress, as shown in Figure 2.   
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For practical purposes it is useful to synthesize the earlier results for the determination of 
extreme stress values. Inspection of Mohr’s circle for the 2D case shows that the 
maximum axial stress is 

 σ1 = max 0  ,   
σ xx +σ yy

2
+

σ xx − σ yy

2
⎛
⎝⎜

⎞
⎠⎟

2

+ τ xy
2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 (5) 

and that the minimum axial stress is 

 σ 3 = min 0  ,   
σ xx +σ yy

2
−

σ xx − σ yy

2
⎛
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⎞
⎠⎟

2

+ τ xy
2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 (6) 

In this document the symbols σ1 and σ3 are reserved for the maximum and minimum 
stress, respectively. This explains the inclusion of zero as a possibility in Eqs. (5) and (6). 
This notation requires particular attention in 2D stress situations, where the out-of-plane 
stress is zero and, thus, often equals σ3. For the 2D case, Mohr’s circle also shows that 
the maximum shear stress equals the radius of the circle: 

 τmax =
1
2

σ1 − σ 2( ) = σ xx − σ yy

2
⎛
⎝⎜

⎞
⎠⎟

2

+ τ xy
2  (7) 

3D Transformations 
Consider the stress traction t={tx ty tz}T that acts on an infinitesimal surface area with 
surface normal n={nx ny nz}T shown in Figure 3, where ti is the force in the i-direction. 
Let dA denote the area of the inclined surface on which the traction acts and let dAx 
denote the area of the side that has the negative x-axis as normal vector, and so forth. 
Equilibrium in the x-direction yields: 

 tx ⋅dA = σ xx ⋅dAx +σ yx ⋅dAy +σ zx ⋅dAz  (8) 

To refine the expression, consider the relationship between the areas dA and dAi. Figure 3 
shows that dA=0.5hl and dAz=0.5hzl. Consequently,  

 dAz
dA

=
hz
h
= cos(θz ) = cos(z,n) = nz  (9) 
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Figure 3: Surface on which the stress traction acts. 

Dividing Eq. (8) by dA yields 

 tx = σ xx ⋅nx +σ yx ⋅ny +σ zx ⋅nz  (10) 

Repeating this exercise for all three axis-directions, and noting that σij=σji because of 
equilibrium considered later in this document, yields the equilibrium equations due to 
Cauchy that relate a surface traction to the coordinate stresses: 

 t = σn =
tx
ty
tz
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= ti = σ ijn j  (11) 

It is noted that, because n is a unit vector, the axial stress on a plane with normal vector n 
is the dot product between n and the stress traction: 

 σ n = t
Tn  (12) 

Subsequently, the Pythagorean theorem determines the largest shear stress on the plane: 

 τ n = t 2 +σ n
2  (13) 

Principal Stresses 
For every material particle it is possible to find three orthogonal planes with zero shear 
stresses. The axial stresses on these planes are called principal stresses. They represent 
the extreme values of the stresses, where σ1 is the largest and σ3 is the smallest principal 
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stress (in absolute value). One approach to determine the principal stresses is to employ 
Eq. (11). For a plane with principal stresses the traction vector is parallel with the normal 
vector of that plane; i.e., there are no shear stresses on that plane and the traction is the 
scaled normal vector: 

 t = σn = λ ⋅n  (14) 

This is an eigenvalue problem in the unknown scalar λ, i.e., σ − λ ⋅ I( )n = 0 . Solutions 
are obtained by setting the determinant of the coefficient matrix equal to zero: 

 λ 3 − I1 ⋅ λ
2 + I2 ⋅ λ − I3 = 0  (15) 

where the stress variants are defined as 
 I1 = σ xx +σ yy +σ zz

 (16) 

 I2 =
σ yy σ yz

σ zy σ zz

+
σ xx σ xz

σ zx σ zz

+
σ xx σ xy

σ yx σ yy

 (17) 

 I3 = σ  (18) 

where vertical bars indicate the determinant operation. Upon solving for the eigenvalues, 
λ, i.e., σ1, σ2, and σ3, the eigenvectors yield the principal directions. The quantities I1, I2, 
and I3 are called stress invariants because they retain the same value regardless of the 
orientation of the coordinate system. These stress invariants are somewhat different from 
the stress invariants J1, J2, and J3 that are mentioned in the section below on stress-based 
failure criteria and extensively used in the theory of plasticity, which is described in 
another document on material nonlinearity. Note that the maximum shear stress in 3D is 

 τmax =
1
2

σ1 − σ 3( )  (19) 

 
 

 


