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Channel cross-section

The open cross-section shown in the figure below is considered. The objective is to calculate all cross-
section constants and determine all stresses due to given stress resultants. The thickness of all parts
of the cross-section is denoted ¢. The cross-section is “thin-walled” and notice that the dimensions are
given to the centre-lines of the cross-section parts.

Input values

Dimensions:
b=80 mm;
h =250 mm;
t =10 mm;

Stress resultants:
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N=50 kN ;
My = 50 mkN ;
Mz =5 mkN ;
Vz =5 kN ;

Vy =5 kN ;
TStV =0.5 mkN

~e

B=0.5 kN » m? ;

Axial force

The relevant cross-section constant is in this case the cross-sectional area:

A=2bt+ht

which yields: 4100 mm?
The axial stress is the axial force divided by the cross-sectional area:

N
ON = —;
A

UnitConvert[oN, "N/mm2"] // N

which yields: 12,1951 N/mm?
The axial stress is distributed uniformly over the cross-section as shown here:

Oy

Bending about the y-axis

The relevant cross-section constant is in this case the moment of inertia of the cross-section about the




Professor Terje Haukaas The University of British Columbia, Vancouver terje.civil.ubc.ca

the local moment of inertia of cross-section parts that are aligned parallel with the y-axis. For those
parts we include only the term dictated by the parallel axis theorem (Steiner’s sats), namely area times
distance to the neutral axis squared:

t h3
Iy = +2bt
12

h\2
_) /N
2

which yields: 3.80208 x 107 mm*
The maximum stress appears at the outermost fibre:

My h
oMyMax = — —;
Iy 2

UnitConvert [oMyMax, "N/mm2"]
whichyields: 164 .384 N/mm?
This stress is distributed over the cross-section as shown here:

o

M ,max

If there is tension at
M, the bottom then there
—>> is compression at the

top, and vice versa.

o

M 5 »max

Bending about the z-axis

Here we must first determine the location of the neutral axis along the y-axis, relative to the centre-
line of the web, denoted yy and shown in Figure 4. This distance is the “first moment of area” about
that reference point, divided by the total area:
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(2bt)

y0= —= //N
A

N‘U“

which yields: 15.6098 mm

The moment of inertia is as follows, again neglecting the local moment of inertia for the cross-section
part that is parallel to the z-axis:

ht3
12

Iz =

t b3 b 2
+hty0?| +2 5 +bt[——y0j
1

which yields: 2 .43514 x 106 mm*

The axial stress in the web, i.e., at any location from B to C is:

Mz
oMzB = — y0;
Iz

UnitConvert[oMzB, "N/mm2"]

which yields: 32 .051 N/mm?

The axial stress at the tip of each flange is

Mz
oMzA= — (b-y0);
Iz

UnitConvert[oMzA, "N/mm2"]

which yields: 132 .21 N/mm?

This axial stress is distributed over the cross-section as shown here:
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Shear stress due to shear force in the z-direction

The shear stress is computed by the formula

\Y
T=—0
It

where Q is the first moment of area about the point where the stress is calculated. Using that formula,

the shear stress at B is:

Vz
TVzB =

h
bt —|;
Iyt 2
UnitConvert|[tVzB, "N/mm2"]

which yields: 1,31507 N/mm?
At the neutral axis the shear stress is:

Vz

14

TVzZNA = tVzB +

h h
t — —

Iyt 2 4

UnitConvert[tVzNA, "N/mm2"]

which yields: 2 .34247 N/mm?

The shear stress is distributed as follows:
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Shear centre by equilibrium

Now that we have the shear stress due to a shear force in the z-direction it is possible to determine the
shear centre by equilibrium considerations. For that purpose, we first calculate the force resultant
from the shear stress in each cross-section part. In the “flanges” that resultant it:

1
VzFlange = — tVzBtb
2

which yields: 0.526027 kN

In the “web” it is:

2
VzWeb = tVzBt h + — (TVzNA - tVzB) t h
3

which yields: 5. kN

Then the location of the shear centre, relative to the centre-line of the web, is determined by
equilibrium about the shear centre, which is located an unknown distance from the centre of the web:

equation = VzFlange h == VzWeb distance
solution = Solve[equation, distance]
ySC = (distance /. solution) [[1]];
UnitConvert[ySC, "mm"]

.
14
.
14

which yields: 26.3014 mm
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Shear stress due to Vy

Using the same approach as above, the shear stress at the neutral axis is

TVyNA =

.
14

\% b-y0)2

Y [, (b-y0)
Izt 2

UnitConvert [TtVyNA, "N/mm2"]

which yields: 4 .25653 N/mm?
Stress at corners:

Vy
TVyB = TVyNA - t ——

Izt 2
UnitConvert[tVyB, "N/mm2"]

.
14

y0? ]

which yields: 4 .00638 N/mm?

Here we also check that the shear stress at the midpoint of the web is zero:

tauVyMidweb = tauVyCorner -

A% h
Y t —y0
Izt 2

which yields: tauvyCorner + - 0.00400638 kN/mm?

The following figure shows the distribution of the shear stress over the cross-section:
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Figure 6: Shear stress due to shear force in the y-direction.

Shear stress due to Tg; .

The cross-section constant for Saint Venant torsion is

1 1
J=_ht3+2x _bt3//N
3 3

which yields: 136 667 . mm?

The shear stress is obtained from Prandtl’s stress function, which in this case reads

r2
1-4 —
£2

=k

.
I

Differentiation with respect to » yields the shear stress:

8 k

t

TStV = r;

The maximu shear stress appears at the edge:

The constant £ is determined from the stress resultant equation T=two times the volume under the

stress function:
. 2
equation=TStV=-2x —kt (2b+h);
3

Solving yields the following k-value:
solution = Solve[equation, k];
k= (k/.solution)[[1l]];
UnitConvert[k, "N/mm"]

which yields: 91.4634 N/mm

In turn, this yields the following maximum shear stress:
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TStV /. solution;
UnitConvert[TStV, "N/mm2"]

which yields: 36,5854 N/mm?

Those calculations can be combined into the formula given in the notes, which gives the same shear
stress value:

t
Ly 3 TStV
t2 (4 t (2b+h)

UnitConvert{ ), "N/mm2 "

which yields: 36,5854 N/mm?

The distribution of the shear stress over the cross-section is shown here:

StV

Axial stress due to bi-moment B

A trial omega diagram is first established about the trial point Q, selected at mid-height of the web.
The value at D is:

h
Q0D =Db —
2

which yields: 10 000 mm?2
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The trial omega-diagram is shown here:

-Q

D

The integral of this trial diagram is zero, hence the normalization constant C is zero. However, the
integral of z Q) is nonzero:

h 1 h 1
integral = | — (—tbQQD) + |- — (— —tbQQD)
[2} 2 2 2

which yields: 1 000000 000 mm®

That gives the same location of the shear centre coordinate relative to the centre of the web as
calculated earlier:

integral
yscFromWeb= - — —
Iy

which yields: -26.3014 mm

In turn, that gives the following shear centre coordinate relative to the neutral axis:
ysc = -y0 + yscFromWeb

whichyields: -41.9111 mm

zp and zy is zero due to symmetry. The final omega diagram is ) = Qg + (ysc — yp) z Where we

notice that

yQ =-y0;

The final omega diagram has the following key values:
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h
QD = QQD + (ysc - yQ) Y
which yields: 6712 .33 mm?2

h
QC = (ysc - yQ) .

which yields: 3287 .67 mm?

That omega digram looks like this:

—Q

¢ —Q

D

To obtain the cross-sectional constant for warping torsion we use “quick integration formulas” to

integrate the omega diagram:

1 h 1 1 2
Cw=2t |—0c2 —+ —0C2b+ —OD?b - —Abs[QC] Abs[ QD] b
3 2 3 3 6

which yields: 2.7032 x 1010 mm®
The axial stress is proportional to the omega diagram shown above:

B
oD = — QD;
Cw

UnitConvert[oD, "N/mm2"]

which yields: 124 .155 N/mm?2
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B
oC=—QC;
Cw

UnitConvert[oC, "N/mm2"]

which yields: _60.8108 N/mm?
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