
Channel cross-section
The open cross-section shown in the figure below is considered. The objective is to calculate all cross-
section constants and determine all stresses due to given stress resultants.  The thickness of all parts 
of the cross-section is denoted t. The cross-section is “thin-walled” and notice that the dimensions are 
given to the centre-lines of the cross-section parts. 
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Input values
Dimensions:

b = 80 mm ;

h = 250 mm ;

t = 10 mm ;

Stress resultants: 
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Ν = 50 kN ;

My = 50 m kN ;

Mz = 5 m kN ;

Vz = 5 kN ;

Vy = 5 kN ;

TStV = 0.5 m kN ;

B = 0.5 kN * m2 ;

Axial force
The relevant cross-section constant is in this case the cross-sectional area:

Α = 2 b t + h t

4100 mm2which yields:

The axial stress is the axial force divided by the cross-sectional area:

σN =
Ν

Α
;

UnitConvert[σN, "N/mm2"] // N

12.1951 N/mm2which yields:

The axial stress is distributed uniformly over the cross-section as shown here:

 σ N

 σ N

Bending about the y-axis
The relevant cross-section constant is in this case the moment of inertia of the cross-section about the 
y-axis. Notice that for thin-walled cross-sections it it convenient and sufficiently accurate to neglect 
the local moment of inertia of cross-section parts that are aligned parallel with the y-axis. For those 
parts we include only the term dictated by the parallel axis theorem (Steiner’s sats), namely area times 
distance to the neutral axis squared:
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The relevant cross-section constant is in this case the moment of inertia of the cross-section about the 
y-axis. Notice that for thin-walled cross-sections it it convenient and sufficiently accurate to neglect 
the local moment of inertia of cross-section parts that are aligned parallel with the y-axis. For those 
parts we include only the term dictated by the parallel axis theorem (Steiner’s sats), namely area times 
distance to the neutral axis squared:

Iy =
t h3

12
+ 2 b t

h

2

2
// N

3.80208 × 107 mm4which yields:

The maximum stress appears at the outermost fibre:

σMyMax =
My

Iy

h

2
;

UnitConvert[σMyMax, "N/mm2"]

164.384 N/mm2which yields:

This stress is distributed over the cross-section as shown here:

  
σ M y ,max

  
σ M y ,max

If there is tension at 
the bottom then there 
is compression at the 
top, and vice versa.  

My 

Bending about the z-axis
Here we must first determine the location of the neutral axis along the y-axis, relative to the centre-
line of the web, denoted y0 and shown in Figure 4. This distance is the “first moment of area” about 
that reference point, divided by the total area:
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y0 =
(2 b t) b

2

Α
// N

15.6098 mmwhich yields:

The moment of inertia is as follows, again neglecting the local moment of inertia for the cross-section 
part that is parallel to the z-axis:

Iz =
h t3

12
+ h t y02 + 2

t b3

12
+ b t

b

2
- y0

2

2.43514 × 106 mm4which yields:

The axial stress in the web, i.e., at any location from B to C is:

σMzB =
Mz

Iz
y0;

UnitConvert[σMzB, "N/mm2"]

32.051 N/mm2which yields:

The axial stress at the tip of each flange is

σMzA =
Mz

Iz
(b - y0);

UnitConvert[σMzA, "N/mm2"]

132.21 N/mm2which yields:

This axial stress is distributed over the cross-section as shown here:
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σ Mz ,A

y0 

N.A. 

  
σ Mz ,B

Mz 

Shear stress due to shear force in the z-direction
The shear stress is computed by the formula

τ =
V

I t
Q

where Q is the first moment of area about the point where the stress is calculated. Using that formula, 
the shear stress at B is:

τVzB =
Vz

Iy t
b t

h

2
;

UnitConvert[τVzB, "N/mm2"]

1.31507 N/mm2which yields:

At the neutral axis the shear stress is:

τVzNA = τVzB +
Vz

Iy t
t
h

2

h

4
;

UnitConvert[τVzNA, "N/mm2"]

2.34247 N/mm2which yields:

The shear stress is distributed as follows:

Professor Terje Haukaas The University of British Columbia, Vancouver terje.civil.ubc.ca

Examples Updated January 9, 2018 Page 5



  
τVz ,B

  
τVz ,NA

Vz 

Shear centre by equilibrium
Now that we have the shear stress due to a shear force in the z-direction it is possible to determine the 
shear centre by equilibrium considerations. For that purpose, we first calculate the force resultant 
from the shear stress in each cross-section part. In the “flanges” that resultant it:

VzFlange =
1

2
τVzB t b

0.526027 kNwhich yields:

In the “web” it is:

VzWeb = τVzB t h +
2

3
(τVzNA - τVzB) t h

5. kNwhich yields:

Then the location of the shear centre, relative to the centre-line of the web, is determined by 
equilibrium about the shear centre, which is located an unknown distance from the centre of the web:

equation = VzFlange h ⩵ VzWeb distance;
solution = Solve[equation, distance];
ySC = (distance /. solution)[[1]];
UnitConvert[ySC, "mm"]

26.3014 mmwhich yields:
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Shear stress due to Vy
Using the same approach as above, the shear stress at the neutral axis is

τVyNA =
Vy

Iz t
t

(b - y0)2

2
;

UnitConvert[τVyNA, "N/mm2"]

4.25653 N/mm2which yields:

Stress at corners:

τVyB = τVyNA -
Vy

Iz t
t
y02

2
;

UnitConvert[τVyB, "N/mm2"]

4.00638 N/mm2which yields:

Here we also check that the shear stress at the midpoint of the web is zero:

tauVyMidweb = tauVyCorner -
Vy

Iz t
t
h

2
y0

tauVyCorner + -0.00400638 kN/mm2which yields:

The following figure shows the distribution of the shear stress over the cross-section:

Vy 

  
τVy ,B

  
τVy ,NA
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Figure 6: Shear stress due to shear force in the y-direction.

Shear stress due to TSt.V .

The cross-section constant for Saint Venant torsion is

J =
1

3
h t3 + 2 ×

1

3
b t3 // N

136 667. mm4which yields:

The shear stress is obtained from Prandtl’s stress function, which in this case reads

Φ = k 1 - 4
r2

t2
;

Differentiation with respect to r yields the shear stress:

τStV =
8 k

t2
r;

The maximu shear stress appears at the edge:

r =
t

2
;

The constant k is determined from the stress resultant equation T=two times the volume under the 
stress function:

equation = TStV ⩵ 2 ×
2

3
k t (2 b + h);

Solving yields the following k-value:

solution = Solve[equation, k];
k = (k /. solution)[[1]];
UnitConvert[k, "N/mm"]

91.4634 N/mmwhich yields:

In turn, this yields the following maximum shear stress:
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τStV /. solution;
UnitConvert[τStV, "N/mm2"]

36.5854 N/mm2which yields:

Those calculations can be combined into the formula given in the notes, which gives the same shear 
stress value:

UnitConvert
8 t

2

t2
3 TStV

4 t (2 b + h)
, "N/mm2"

36.5854 N/mm2which yields:

The distribution of the shear stress over the cross-section is shown here:

  τ St .V

Axial stress due to bi-moment B
A trial omega diagram is first established about the trial point Q, selected at mid-height of the web. 
The value at D is:

ΩQD = b
h

2

10 000 mm2which yields:
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The trial omega-diagram is shown here:

 ΩD

 −ΩD

The integral of this trial diagram is zero, hence the normalization constant C is zero. However, the 
integral of z Ω is nonzero:

integral =
h

2

1

2
t b ΩQD + -

h

2
-
1

2
t b ΩQD

1 000 000 000 mm5which yields:

That gives the same location of the shear centre coordinate relative to the centre of the web as 
calculated earlier:

yscFromWeb = -
integral

Iy

-26.3014 mmwhich yields:

In turn, that gives the following shear centre coordinate relative to the neutral axis:

ysc = -y0 + yscFromWeb

-41.9111 mmwhich yields:

zQ and zsc is zero due to symmetry. The final omega diagram is Ω = ΩQ + (ysc - yQ) z where we 
notice that

yQ = -y0;

The final omega diagram has the following key values:
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ΩD = ΩQD + (ysc - yQ)
h

2

6712.33 mm2which yields:

ΩC = (ysc - yQ)
h

2

-3287.67 mm2which yields:

That omega digram looks like this:

 ΩD ΩC

 −ΩC
 −ΩD

To obtain the cross-sectional constant for warping torsion we use “quick integration formulas” to 
integrate the omega diagram:

Cw = 2 t
1

3
ΩC2

h

2
+
1

3
ΩC2 b +

1

3
ΩD2 b -

2

6
Abs[ΩC] Abs[ ΩD] b

2.7032 × 1010 mm6which yields:

The axial stress is proportional to the omega diagram shown above:

σD =
B

Cw
ΩD;

UnitConvert[σD, "N/mm2"]

124.155 N/mm2which yields:
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σC =
B

Cw
ΩC;

UnitConvert[σC, "N/mm2"]

-60.8108 N/mm2which yields:
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