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Unit Virtual Load Method 
This is a powerful method for calculating displacements and rotations, primarily in 
statically determinate structures. Compared with the moment-area method, the analysis 
procedure in the virtual unit load method is more generic. The same procedure is applied 
to all structures.  

In textbooks, this method is often referred to simply as the virtual work method. 
However, the principle of virtual work is more broadly applicable than in the application 
of a unit load to compute deformations. Therefore, a more specific title is adopted here. 
The word “virtual” may prompt the question whether there is a “real work method.” 
There is. It is sometimes referred to as the work-energy method. However, the method of 
real work has serious limitations; it only provides the deformation for structures loaded 
with one point load, exactly at the location where that load is acting. Conversely, the 
virtual work method let us determine the displacement and rotation at any location for 
any load pattern.  
The unit virtual load method is most convenient when applied to statically determinate 
structures. The reason is that the method requires a re-analysis of the structure to 
determine the bending moment diagram for a unit force or moment applied to the 
structure at the location where the displacement or rotation is sought. This extra analysis 
is of course possible for any structure, e.g., by computer methods, but it is most 
convenient for statically determinate structures.  

The derivation of the unit virtual load method starts by studying the concept of work. 
Work is defined as force multiplied with displacement, or equivalently, moment 
multiplied with rotation. When the force is constant during the displacement then the 
work is: 

 W = F ⋅ Δ    or   W = M ⋅θ  (1) 

where W is work, F is force, Δ is displacement, M is moment, and θ is rotation. If the 
force varies during the deformation then the work is evaluated by integration: 

 W = F  dΔ
0

Δ

∫    or   W = M  dθ
0

κ

∫  (2) 

These integrals are illustrated in Figure 1 for nonlinear material behaviour (left) and 
linear material behaviour (right). For the latter case, i.e., Hooke’s Law, the resulting work 
always contains the factor ½: 

 W =
1
2
⋅F ⋅ Δ    or   W = 1

2
⋅M ⋅θ  (3) 
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Figure 1: Accumulation of work. 

Turning to internal work, U, in a structural member, the principle is the same. However, 
now the work is integrated over the entire member. In general, this integral reads 

 U = 1
2
⋅σ ⋅ε ⋅dV

V
∫  (4) 

where V is the volume of the structural member. First, consider a truss member with 
length, L, constant cross-section area, A, modulus of elasticity, E, and a constant axial 
force, N. By introducing the fundamental equations from truss member theory, the 
internal work reads: 
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 (5) 

where the material law, σ=Eε, and the section force resultant, N= σA, have been 
introduced. In contrast, it is unnecessary to introduce the kinematic equation for the 
member when an expression is sought in terms of the internal forces of the member. 
Similarly, for a frame member subjected to bending, the internal work is: 
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 (6) 

In addition to the internal work from axial force and bending moment it is also possible to 
consider internal work due to shear force. This facilitates the inclusion of shear 
deformation in advanced structural analysis. In accordance with the classical theory for 
inclusion of shear deformations (see the document on Timoshenko Beam Theory) an 
“average shear strain,” γv, is introduced. It is called average because the shear strain 
varies over the cross-section, proportional to the shear stresses. From elementary beam 
member theory we know that the shear stresses are not constant over the cross-section, 
hence neither are the shear strains. To simplify matters, the average shear strain 
(sometimes called shear angle) is introduced. In the beam theory the average shear strain 
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is related to the “shear area” Av of the cross-section. Consequently, the internal work due 
to shear force is 

 U = V ⋅ γ v
0

L

∫  dx = V ⋅
τ v
G0

L

∫  dx = V ⋅
V

G ⋅ Av0

L

∫  dx  (7) 

Having established expressions for external work due to applied forces/moments, as well 
as internal work in structural members, attention turns to the concept of virtual work. The 
“secret” of virtual work is understood by considering one of its principles: the principle 
of virtual forces. Imagine a structure loaded by its actual loads as well as some virtual 
(imaginary, dummy) loads. In fact, imagine that the virtual loads are placed on the 
structure first. Thereafter the actual loads are gently placed on the structure. The situation 
is illustrated in Figure 2, in terms of external and internal work. In the figure and 
throughout these notes, virtual forces and deformations are identified by a preceding 
delta.  

 
Figure 2: The principle of virtual work. 

Figure 2 identifies by shaded areas the virtual work that is carried out when the virtual 
loads are applied, and the real work that is carried out when the real loads are applied. 
More importantly, it shows by white rectangles the virtual work that is carried out 
because the virtual forces are present when the real loads are applied. Because of the 
rectangular shape, this work does not contain the ½ factor. 

The principle of conservation of energy states that the shaded triangles due to the 
application of the virtual load, i.e., the external and internal work, must be equal. It also 
states that the shaded triangles due to the application of the real loads, i.e., the external 
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and internal work, must be equal. Consequently, the rectangles in Figure 2 must also be 
identical. This leads to the principle of virtual forces: 

 δF ⋅ Δ
δM ⋅θ

⎫
⎬
⎭⎪
=

δN ⋅N ⋅ L
EA

+
δM ⋅M
EI0

L

∫ dx + δV ⋅V
G ⋅ Av0

L

∫  dx
⎛

⎝⎜
⎞

⎠⎟Sum over 
all members

∑  (8) 

In practical evaluation of Eq. (8), shear deformations, i.e., the last term, is usually omitted 
unless the cross-section is high compared to the length of the beam. Regardless, the 
procedure to determine deformations by the unit virtual load method is: 

1. Determine the section force diagrams (M, N, V) due to the real loads.  
2. Determine the section force diagrams due to a unit virtual force/moment placed 

where the displacement/rotation is sought. It is set equal to 1.0 for convenience. 
3.  Evaluate the right-hand side of Eq. (8) by summing contributions from all 

members of the structure. Quick integration formulas are provided in an auxiliary 
document.  

4. Because the virtual force is set to unity, the result is the sought displacement or 
rotation. 

Settlements and Changes in Member Lengths 
The virtual work approach can also be utilized to determine the displacement and rotation 
at any location in the structure due to settlements and change in the length of members 
due to, e.g., temperature change and fabrication errors. In this context there is a 
significant difference between statically determinate and indeterminate structures. 
Statically determinate structures do NOT develop internal forces under these 
circumstances. Conversely, settlements and member length changes do generally develop 
internal forces due to such effects. This is a key difference between determinate and 
indeterminate structures.  

Support settlements are first addressed. In accordance with the earlier derivations, the 
settlements occur after the virtual load is applied. As a result, the total external virtual 
work is  
 δF ⋅ Δ + δFS1 ⋅ ΔS1 + δFS2 ⋅ ΔS2 +  (9) 

where the first term is the always-present work due to the unit load, while the other terms 
are due to settlements ΔSi at supports where the reaction forces due to the unit virtual load 
is δFSi. The expression in Eq. (9) replaces the left-hand side in Eq. (8). Conversely, the 
effect of change in member length affects the right-hand side of Eq. (8). In the original 
right-hand side, the internal work due to axial deformation is 

 δN ⋅
N ⋅ L
EA

⎛
⎝⎜

⎞
⎠⎟  (10) 

where the parenthesis represents the axial deformation. The effect of temperature changes 
and fabrication errors are readily included by amending that expression:  
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 δN ⋅ N ⋅L
EA

+α ⋅ΔT ⋅L + ΔLfab. error
⎛
⎝⎜

⎞
⎠⎟  (11) 

where α is the coefficient of thermal expansion and ΔT is the temperature change. 
α ≈ 1.2.10-5°C-1 for steel and concrete. If the temperature varies over the cross-section 
then it causes, in general, both curvature and an overall change in the length of the 
member. Let ΔTtop and ΔTbottom denote the temperature change on each side. Then, the 
change in member length is obtained by averaging the temperature on each side: 

 ΔL =α ⋅
ΔTtop + ΔTbottom

2
⎛
⎝⎜

⎞
⎠⎟
⋅L  (12) 

The curvature from differential temperature change is computed by first recalling the 
relationship between strain and curvature when the strain is symmetric about the neutral 
axis: 

 ε =κ ⋅ h
2

 (13) 

where h is the height of the cross-section. In this case, the strain in the outer fibre is what 
is left over after the average temperature change in Eq. (12) is subtracted: 
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 (14) 

Combination of Eqs. (13) and (14) yields the curvature from differential temperature 
change, which is added to the ordinary bending curvature from the load: 
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In practical applications of the unit virtual load method, the following sign convention 
applies: If the curvature (or change in length) is in the same direction as the curvature (or 
change in length) of the virtual moment (or axial load) then the contribution is positive. 
The directions are opposite then the contribution is negative. This is emphasized by a  ±-
sign in the following summarizing amended version of Eq. (8): 
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This equation is also valid if the left-hand side consists of moments rather than forces. 
When inserting changes in member lengths, i.e., ΔLfab.error recall that, in general, 
compression is negative and tension is positive, which implies that shortening is negative 
and lengthening is positive.  

 


