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Moment Distribution Method 
The moment distribution method—sometimes named the Cross method after its inventor 
Hardy Cross—plays a special role in structural engineering. It is a hand calculation 
method for the analysis of statically indeterminate frame structures. Some say the method 
is obsolete after the advent of computer methods. Others say it is essential and powerful 
as an approach that prevents black-box use of structural analysis programs. In this 
document the derivation, capability, and limitations of the method are established. 

Formally, the moment distribution method is a displacement method, because it is 
founded on equilibrium equations rather than compatibility equations. Practically, it is 
based on iterative clamping and releasing of joints. To understand the method, consider 
the end moments of frame members coming into a joint. Equilibrium requires that the 
sum of these moments is zero. The moment distribution method iteratively applies 
moment equilibrium at joints. Consider a structure in which only joint rotations, not joint 
displacements, are unknown. Such structures are said to have zero “sidesway.” The 
archetypical case addressed by moment distribution is a continuous horizontal beam with 
any number of supports.  
To understand the method, first imagine temporary clamps at all joints. The clamps 
prevent all joints from rotating. Next, remove the clamps one-by-one, i.e., joint-by-joint. 
At each joint, the member-end moments generate an unbalanced moment that is 
distributed to each member-end according to the relative bending stiffness of each 
member. This is the essence of the moment distribution method. This method is ideally 
suited for horizontal continuous beam members because they allow us to keep track of 
the moment equilibrium iterations in a neat table below the structure. 
To derive the method, consider two beam members AB and BC that are continuously 
attached at B. This configuration is shown in Figure 1. Each beam may support some 
loads that, in the situation of clamped member-ends, give rise to the fixed-end moments 
FEMAB, FEMBA, FEMBC, FEMCB, where the two indices indicate the member and the first 
index indicates the location of the moment. The convention is that clockwise end 
moments are positive. Fixed-end moments for common loading scenarios are provided in 
another document. Now define the “unbalanced moment” at joint B as  

 UMB = FEMBA + FEMBC  (1)  

Both moments act positively clockwise on the member-ends and, thus, counter clockwise 
on the joint. In other words, if both fixed-end moments were positive then they would 
rotate the joint in the counter-clockwise direction when the joint is unclamped. In terms 
of moments, when the clamp is released they distribute onto the member ends according 
to the relative bending stiffness of each member-end. This is expressed in terms of a 
“distribution factor,” called DF. As shown in Figure 1, the distributed end moments are  

 MBA = − DFBA ⋅UMB( )  (2) 

 MBC = − DFBC ⋅UMB( )  (3) 
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where DFBA and DFBC are distribution factors that are proportional to the bending 
stiffness of each member. In other words, the distribution factor DFBA identifies how 
much of the unbalanced end moment will be attracted to end B of the member that 
connects A and B. The sum of the distribution factors in a joint equals unity. 

 

 
Figure 1: Key concepts of the moment distribution method. 

To determine the value of the distribution factors, first express the rotation of each 
member-end as a function of the unbalanced moment. Utilizing the relationship between 
moment and rotation at the end of a fixed-fixed member, provided for example by the 
slope-deflection equation, one obtains: 

 θBA =
− DFBA ⋅UMB( ) ⋅LAB

4EIAB
 (4) 

 θBC =
− DFBC ⋅UMB( ) ⋅LBC

4EIBC
 (5) 

Continuity of the beam, which requires that θBA=θBC, in combination with the condition 
that DFBA+DFBC=1 yields:  
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 DFBA =
4EIAB LAB

4EIAB LAB + 4EIBC LBC
 (6) 

 DFBC = 4EIBC LBC
4EIAB LAB + 4EIBC LBC

 (7) 

From these equations we understand that the generic equation to determine the 
distribution factors is 

 DFi =
4EIi / Li
4EI / L∑  (8) 

where the sum in the denominator represents the sum of the bending stiffness of all 
members coming into a joint. Having distributed the unbalanced moment in an 
unclamped joint according to the distribution factors in Eq. (8), the next step is to 
recognize that the distributed moments at B travel to the opposite member-end according 
to the equations 

 COMBA =
1
2
⋅DFBA ⋅UMB  (9) 

 COMBC =
1
2
⋅DFBC ⋅UMB  (10) 

where COM is shorthand notation for “carry-over moment.” The factor ½ is obtained 
from the slope-deflection equation by considering a beam that is rotated at one end and 
held fixed at the other end. In short, an applied end moment translates to half the value at 
the opposite fixed end.  

That concludes the theoretical foundation for the moment distribution method. As 
conceptually shown in Figure 2, moment distribution is carried out as follows: 

1. First, draw a sketch of the structure 
2. Under each joint, make room for one column of numbers per member-end 
3. The first row of each column in the table contains the distribution factor, DF; it is 

computed according to Eq. (8) 
4. The second row contains the fixed-end moment, FEM; it is computed by any 

structural analysis method and a look-up table is provided in an auxiliary document in 
these notes on structural analysis 

5. The subsequent rows contain either distributed end moments, DEM, or carry-over 
moments, COM, according to the following steps 

6. Select any joint and compute the unbalanced moment. It is the sum of all fixed-end 
moments and externally applied moments in the joint. Clockwise fixed-end moments 
are positive. Un-clamp the joint and distribute the negative unbalanced moment to 
each member-end according to its distribution factor. The negative sign is applied 
because a positive unbalanced moment, which drives the joint counter clockwise, 
applies a negative moment to the member-ends when the joint is unclamped. 

7. Send carry-over moments, i.e., half the distributed end moment, to the adjacent joints 
and re-clamp the joint under consideration 

8. Move to the next joint and repeat Steps 6 and 7 
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9. The analysis is terminated when there are no more unbalanced moments to release, or 
when the unbalanced moments reach values that are below the desired level of 
accuracy. At that time, add a final row with the sum of all the moments (FEM, DEM, 
COM) of that column. 

To draw the final bending moment diagram, start by drawing the ordinates provided by 
the end moments in the final row of the moment distribution table. Then add the shape of 
the bending moment diagram between the member-ends, i.e., the moment diagram for the 
member as if it was simply supported. It is possible to carry out the moment distribution 
method also for structures with side-sway. However, in this circumstance the method 
looses its appeal, which means that computational methods, such as the stiffness method, 
are preferred.   

 
Figure 2: Moment distribution iterations. 

Modified Procedures 
It is possible to introduce modifications of the distribution factors, DF, and the fixed-end 
moments, FEM, which makes the moment distribution converge quicker. In particular, 
the distribution factors can be modified for symmetric structures and for members that 
have one pin or roller end. Similarly, fixed-end moments can be developed for members 
that have only one end fixed, while the other is pinned. In this document it is preferred to 
avoid modifications of fixed-end moments in order to maintain only one table of fixed-
end moments. On the other hand, it is recognized that the modification of distribution 
factors can save significant time in hand calculations. Therefore, modified distribution 
factors, i.e., modification of Eq. (8) are established for symmetric members and for 
members that have one pin or roller end. 
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End with Pin or Roller 
To derive a modified version of Eq. (8) when member BC has a pin or roller at C, 
consider the beam in the middle rectangle in Figure 3. In this situation the unit virtual 
load method reveals the end moment at B is equal to MBC=3EI/L. As a result, the 
distribution factors in Eqs. (6) and (7) when member BC has a pin or roller at C are 

 DFBA =
4EIAB LAB

4EIAB LAB + 3EIBC LBC
 (11) 

 DFBC = 3EIBC LBC
4EIAB LAB + 3EIBC LBC

 (12) 

Symmetry 
To derive a modified version of Eq. (8) for a symmetric member, i.e., one that crosses a 
symmetry line, consider the bottom rectangle in Figure 3. Due to symmetry the rotation at 
C is the same as the rotation at B, albeit counter-clockwise. In this situation, the slope-
deflection equation yields the end moment at B equal to MBC=2EI/L, as shown at the 
bottom of Figure 3. As a result, the distribution factors in Eqs. (6) and (7) when member 
BC is symmetric are 

 DFBA =
4EIAB LAB

4EIAB LAB + 2EIBC LBC
 (13) 

 DFBC = 2EIBC LBC
4EIAB LAB + 2EIBC LBC

 (14) 
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Figure 3: Derivation modified distribution factors. 
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