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Lateral Torsional Buckling 
The phenomenon called lateral torsional buckling is illustrated for a beam with an I-
section in Figure 1. Suppose the beam is loaded with downward-acting distributed load, 
i.e., load in the negative z-direction. Unless the beam is restrained from displacing in the 
y-direction, the deformation shown in Figure 1 may occur. The phrase “lateral torsional 
buckling” is appropriate because the cross-section both rotates and displaces laterally. It 
is also a buckling phenomenon because the lateral stiffness is affected by the intensity of 
the load that is applied to the beam. In fact, the buckling load is determined by the lateral 
stiffness being zero.  

Double-symmetric Cross-sections 

 
Figure 1: Lateral torsional buckling of I-section 

Transformation between Original and Deformed Configuration 
To account for the effect of the applied load on the lateral stiffness it is necessary to 
consider equilibrium in the displaced configuration. For that reason, a new coordinate 
system     x = ( x, y, z)  is established in the displaced configuration as shown in Figure 1. A 
point x=(x, y, z) prior to deformation has the coordinates    ( x, y, z)  after deformation. The 
new coordinate system represents a rotation of the original one, and a rotation matrix, R, 
relates the two systems: 
   x = Rx  (1) 

From the math-document on vectors and geometry it is understood that the rotation 
matrix contains “direction cosines:”  
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xi = cijx j  (2) 

where cij is the cosine between the vector   xi  and xj, i.e., the amount of    xi  in the direction 
of xj. With reference to Figure 1, and provided small rotations so that cos(θ)≈1 and 
sin(θ)≈θ, the rotation matrix is: 
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Furthermore, for small deformations, θz=dv/dx and θy=–dw/dx, and the rotation matrix 
reads: 
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Differential Equation 
Given the transformation between the original and deformed configurations it is possible 
to determine the bending moments in the deformed beam due to a bending moment, Mo, 
in the un-deformed beam: 
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For small deformations, the curvatures are approximately equal in the two coordinate 
systems, hence:  

 
   
κ y =κ y =

d 2w
dx2  (6) 

 
   
κ z =κ z =

d 2v
dx2  (7) 

This means that the moment-curvature relationship for bending about the strong axis in 
the deformed configuration is: 
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M y = M y = −EI y

d 2w
dx2  (8) 

which is the ordinary beam bending equation. The moment-curvature relationship for 
bending about the weak axis in the deformed configuration is: 
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The relationship between torque and rotation is: 
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Differentiating Eq. (10) with respect to x and combining it with bending around the weak 
axis given by Eq. (9) yields: 
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Solution without Warping Torsion 
First, consider a solution without warping torsion, in which case Eq. (11) simplifies to: 
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The general solution to this differential equation is 
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To gain insight into the lateral torsional buckling phenomenon, consider a simply 
supported beam with “fork”-type supports, i.e., φ=0 at both ends of the beam. This yields 
two equations to determine C1 and C2: 

   φ(0) = C1 = 0    ⇒     C1 = 0  (14) 
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From Eq. (15) it is understood that a non-trivial solution requires that: 
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where n is any integer. Each integer value corresponds to a value of My. The smallest 
non-zero value of My is the critical value at which the beam buckles laterally: 
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M y ,cr =

π
L
⋅ EIz ⋅GJ  (17) 

Solution with Warping Torsion 
Reconsider Eq. (11), now with warping torsion, and rewritten on the form: 
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The general solution to this differential equation is:  

   φ(x) = C1 ⋅cos γ ⋅ x( ) +C2 ⋅sin γ ⋅ x( ) +C3 ⋅cosh η ⋅ x( ) +C4 ⋅sinh η ⋅ x( )  (19) 

where:  
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Four boundary conditions are required to determine the four constants C1, C2, C3, and C4. 
For the simply supported beam, both φ and φ’’ are zero at both ends of the beam. The 
latter implies that the bi-moment is zero at the ends, i.e., the beam is free to warp at the 
ends. Nevertheless, warping torsion contributes to the solution. In particular, to obtain a 
non-trivial solution: 

   sin γ ⋅ L( ) = 0    ⇒     γ ⋅ L = n ⋅π  (22) 

The smallest critical value of γ is obtained for n=1: 
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Solving for β in order to ultimately solve for My yields: 
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Substitution of the expressions for α and β yields: 
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Single-symmetric Cross-sections (The Wagner Effect) 
(Yet to be written.) 


